

User's Manual

RM/TM-6740CL RMC/TMC-6740CL

Digital Monochrome/Color Progressive Scan, Interline-Transfer CL Camera

> Document Version: F Document P/N: 69-1209

Disclaimer

The material contained in this manual consists of information that is proprietary to JAI Inc., and may only be used by the purchasers of the product. JAI, Inc. makes no warranty for the use of its product and assumes no responsibility for any errors which may appear or for damages resulting from the use of the information contained herein. JAI, Inc. reserves the right to make changes without notice.

Microsoft, Windows 95, 98, NT, 2000, XP, and Windows Explorer are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Warranty

Please contact your factory representative for details about the warranty.

Certifications

CE Compliance

The RM/TM-6740CL series of cameras has been certified to conform to the requirements of Council Directive 89/336/EC for electromagnetic compatibility and to comply with the following European Standards:

EMCEN55022: 1998 + A1: 2000 CLASS A EN55024: 1998 + A1: 2001

All JAI Inc. products bearing the CE mark have been declared to be in conformance with the applicable EEC Council Directives. However, certain factory-installed options or customer-requested modifications may compromise electromagnetic compatibility and affect CE compliance. Please note that the use of interconnect cables that are not properly grounded and shielded may affect CE compliance.

Contact the JAI Inc. Applications Engineering Department for further information regarding CE compliance.

FCC

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area may cause harmful interference, in which case the user will be required to correct the interference at his own expense.

WARNING

Changes or modifications to this unit not expressly approved by the party responsible for FCC compliance could void the user's authority to operate the equipment.

RM/TM-6740CL Series Operation Manual

JAI Inc. 625 River Oaks Parkway San Jose, CA 95134 Tel:(408) 383-0300 Tel:(800) 445-5444 Fax:(408) 383-0301 www.jai.com

December 02, 2009

RM/TM-6740CL Series

Table of Contents

Disclaime	r Notice	iii	
Table of C	Table of Contents v		
List of Fig	List of Figures		
List of Tal	bles	ix	
1	Hardware Introduction	9	
1.1	Product Description	9	
1.2	Features	9	
1.3	System Configuration	10	
2	Installation	11	
2.1	Getting Started	11	
2.1.1	Unpacking Instructions	11	
2.1.2	Components List	11	
2.1.3	Accessories and Options	11	
25	Camera Setun	11	
2.2	Heat Dissination	11	
2.2.1	Connector Pin Configurations	12	
2.2.2	Camera Link Cable	בי 13	
2.2.3	Power Supplies and Power Cable Setup	13	
2.2.4	Attaching the Appled Video Output	15	
2.2.5	Attaching the Analog Video Output	IJ 15	
2.2.0	Attaching the Camera Lens	10 4 E	
2.3	Califera Real Pallet	IJ 4 E	
2.3.1	Digital I/O Connector (Camera Link)	ID	
Z.3.Z	Analog Output Connector	15	
2.3.3	Power and External Sync Connector	15	
3	Functions and Operation	16	
3.1	Progressive Scanning	16	
3.2	Electronic Shutter	19	
3.3	Integration	19	
3.4	External Sync and Pixel Locking	19	
3.5	Asynchronous Reset	19	
3.5.1	Async No Shutter	20	
3.5.2	Internal Shutter Speed Control	20	
3.5.3	External VINIT With Pulse Width (No-Delay Shutter) and ROI (Read-out Inhibit)	20	
3.6	Dynamic Range Control	22	
3.6.1	Programmable Look-Up Table (LUT) and Knee Control	22	
3.7	Camera Timing Charts	22	
4	Control Software Installation and Use	31	
4.1	Introduction	31	
4.2	Software Installation	31	
4.2.1	Before Installing the Dual-Tap AccuPiXEL Series Camera-Control Software	31	
4.2.2	Installing the Software	31	
4.2.3	Installing the Camera Link API .dll (clserXXX.dll)	33	
4.2.4	Running Dual Tap AccuPiXEL	33	
4.2.5	Uninstalling the Software	33	
5	Graphical User Interface		
5.1	GUI Features		
5.2	Starting Dual-Tap AccuPiXEL Software		
5.3	Setting up the Camera Link software	35	
5.5			

		-
5.3.1	CamLink Mode	35
5.3.2	GigE Mode	36
5.4	Operating The Control Software	36
5.4.1	Choose the CamLink mode	36
5.4.2	Check Current Camera Setting	36
5.4.3	Exposure Control	36
5.4.4	Gain Control	39
5.4.5	Ref. Voltage	39
5.4.6	LUT (Look-Up Table)	40
5.4.7	Video Depth	41
5.4.8	Report	41
5.5	Main Menu: "File"	42
5.5.1	Load and Save Page	42
5.5.2	Save Page	42
5.5.3	Read Page	43
5.6	Main Menu Option	43
5.7	Main Menu "Connectivity"	44
5.8	Main Menu "About"	44
5.8.2	Exit	45
6	Serial Communication Kit	46
6.1	RM-6740CL command list	46
7	Troubleshooting	49
7.1	Problems and Solutions	49
7.1.1	Symptom: No Video	49
7.1.2	Symptom: Dark Video	49
7.1.3	Symptom: Non-Synchronized Video	49
7.2	Information and Support Resources	49
8	Camera Specifications	50
8.1	Specifications	50
8.1.1	RM-6740CL Physical Dimensions	51
8.1.2	Spectral Response	52

RM/TM-6740CL Series

List of Figures

Figure 1.	CL (Camera Link) System Configuration	10
Figure 2.	3M Camera Link Cable	13
Figure 3.	12P-02S Interface Cable (optional)	14
Figure 4.	Full Progressive Scan Mode (A)	16
Figure 5.	Partial Scan Mode (B, C, and D)	17
Figure 6.	No-Delay Shutter	21
Figure 7.	Read-Out Inhibit	21
Figure 8.	The Setup icon installs Dual Tap AccuPiXEL v 2.6.0	32
Figure 9.	AccuPiXEL Setup screen	32
Figure 10.	Follow the installation directions	32
Figure 11.	Starting Dual-Tap AccuPiXEL from the desktop	35
Figure 12.	Initial Dual Tap AccuPiXEL screen	35
Figure 13.	Choose the desired frame grabber DLL	35
Figure 14.	The error message if the .dll application is missing	36
Figure 15.	The Report button provides camera setting information in the TX/RX frame	36
Figure 16.	Manual and Async exposure control	36
Figure 17.	Exposure Control, Shutter Speed	37
Figure 18.	Select PWC from Shutter Speed in the Async mode	38
Figure 19.	Use the binning drop-down list box to select a setting	38
Figure 20.	Ref. Voltage slider	40
Figure 21.	Positive or Negative image	40
Figure 22.	The knee setting does not activate until the Send Knees button is clicked	41
Figure 23.	10-bit video output deactivates the LUT frame	41
Figure 24.	Automatic camera report	42
Figure 25.	Load Page	42
Figure 26.	Save Page	43
Figure 27.	Video output order	44
Figure 28.	Buffer Size	44
Figure 29.	Camera Model	44
Figure 30.	CPU Firmware Version	45
Figure 31.	Control Software Version	45
Figure 32.	FIGURE 8. Physical Dimensions	51
Figure 33.	Monochrome Spectral Response	52
Figure 34.	Color Spectral Response	52

List of Tables

12-Pin Connector	12
Connector and Pin-Out Configurations	12
12P-02S Cable	14
RM-6740CL Scan Mode	18
Electronic Shutter Speeds	19
Video Output (A to J)	26
Video Output (K to T)	27
External HD Locking and External VD Reset (eA to eE)	28
External HD Locking (eF to eJ)	29
Async Reset	30
RM-6740CL Command List	46
18 Bytes Status Report	47
RM-6740CL Camera Specifications Table	50
	12-Pin Connector Connector and Pin-Out Configurations

RM/TM-6740CL Series Camera

1 Hardware Introduction

1.1 **Product Description**

The JAI RM-6740CL series consists of high-speed progressive scan CCD cameras with Dual-Tap output, available in RoHS and non-RoHs versions with both monochrome and Bayer color models offered (RM-6740CL, TM-6740CL, RMC-6740CL, TMC-6740CL)¹. The interline-type CCD permits full vertical and horizontal resolution of very high speed shutter images and applications. The electronic shutter, which has speeds to 1/64,000 sec., can be reset asynchronously by external pulse control. The frame rate for a full image is 200 fps, with partial scan and binning modes of up to 3205 fps. A 4:3 ratio imager format with uniform square pixels provides superior image definition in any orientation. On-chip micro lenses provide increased sensitivity.

The RM-6740CL has a full dynamic range control function, which can be set at externally selectable look-up table (LUT) knee slopes to convert 10-bit input to 8-bit output, thereby optimizing the CCD's full dynamic range in the normal output signal range. As a Dual-Tap camera, the RM-6740CL has dual-channel auto-black level balancing (except in horizontal partial scanning modes) and semi-auto-gain balancing functions. The camera has a Dual-Tap, 10-bit/8-bit Camera Link output (see Figure 1 "CL (Camera Link) System Configuration" on page 10). All the key functions are controlled via a Camera Link serial communication interface.

Applications for the RM-6740CL include machine vision, medical imaging, intelligent transportation systems, high-definition graphics, on-line inspection, gauging, character reading, archiving, and high-security surveillance.

1.2 Features

• Miniaturized and lightweight

The printed circuit boards in the RM-6740CL have been arranged based on a new design philosophy. This creates modular electronics for the camera, giving it flexibility. In addition, the use of miniature solid-state components results in a compact, lightweight camera that is 50.8mm x 50.8mm x 74mm in dimensions, and weighs only 162 grams.

Imager

The RM-6740CL uses a Dual-Tap progressive-scan interline transfer CCD (KAI-0340) that has the following features:

- Resolution of 640 x 480 active pixels for excellent image quality
- 7.4 x 7.4 µm square pixels for precise dimensional measurement
- High-speed electronic shutter capability for high dynamic resolution of moving objects that eliminates the need for a mechanical shutter.
- Progressive-scan CCD eliminates interlace deterioration of image and increases ease of computer interface.
- High sensitivity and low noise at fast scanning. The CCD has an excellent S/N ratio at the default setting that is greater than 50dB.
- The CCD has built-in microlenses for increased quantum efficiency.

¹ The RM-67400CL series consists of the TM-6740CL, RM-6740CL (monochrome) and the TMC-6740CL and RMC-6740CL (color). Unless otherwise noted, all information contained in this manual is relevant to all models.

• Electronic shutter

The RM-6740CL has a substrate drain-type shutter mechanism which provides superb pictures at various speeds without smearing. For more information, please see Section 3.3, "Electronic Shutter".

Asynchronous reset

The RM-6740CL captures async reset images and provides single-shot video output with single FDV. This makes it simpler for an ordinary frame grabber to capture the async reset images. The RM-6740CL's asynchronous reset is flexible and accepts external horizontal drive (HD) for phase locking. When the VINIT (5V) pulse is applied to CC1, it resets the camera's scanning and purging of the CCD.

The RM-6740CL has three modes to control the asynchronous reset and shutter speed:

- Async, no shutter. The video signal and FDV are reset by external VINIT.
- Internal shutter speed control. The speed control varies from 1/250 to 1/64,000 sec. The video signal and FDV starts with internal V reset timing related to shutter speed.
- External VINIT with pulse width. The duration between pulse edges controls the shutter speed externally.
- Output

The RM-6740CL has Dual-Tap 10-bit/8-bit Camera Link output. The analog output is 714 mVp-p composite video (75 ohms) on all models.

Dual-Channel Auto Black Level Balancing and Semi-Auto Gain Balancing

The RM-6740CL, as a Dual-Tap output camera, has auto black level balancing and semi-auto gain balancing functions.

Integration

The RM-6740CL is capable of capturing high-resolution integration images. Its CCD imager can be exposed for longer than the normal scan timing of 1/200 sec. This integration feature provides extra sensitivity for applications in dark environments. The progressive scan imager permits a full frame of resolution in non-interlace format. Integration is achieved by applying INTEG signal to CC2 control of Camera Link or by feeding VINIT pulse width control up to 1 sec of the pulse width in async pulse width control mode for the frames to be integrated.

• Warranty

Please contact your factory representative for details about the warranty.

1.3 System Configuration

Figure 1 below presents a typical system configuration for the Camera Link version.

Figure 1. CL (Camera Link) System Configuration

2 Installation

The following instructions are provided to help you to set up your camera quickly and easily. We suggest that you read through these instructions before you unpack and set up your camera system.

2.1 Getting Started

2.1.1 Unpacking Instructions

We recommend that you save the original packing cartons for the cameras and accessories in case you need to return or exchange an item.

We also recommend that you bench-test any equipment being sent to another location for field installation to assure that everything is fully operational as a system.

2.1.2 Components List

Please begin by checking your order against the Components List shown below to assure that you have received everything as ordered, and that nothing has been overlooked in the packing materials. If any item is missing, please contact your JAI Inc. representative immediately.

- RM-6740CL camera
- Camera-specific data sheet
- Camera-appropriate operation manual (if online)
- Dual-Tap AccuPiXEL camera-control software

2.1.3 Accessories and Options

Following is a list of additional accessories and options that may be required for your application. Please check with your JAI Inc. representative before you install your camera to determine what you might need.

- PD-12U series power supply
- 12P-02S power cable
- 26CL-02-26 Camera Link cable
- TP-20 Tripod Mounting Kit (for dimensions go to: <u>www.jai.com/EN/CameraSolutions/Products/Accessories/Pages/Home.aspx</u>)

2.2 Camera Setup

2.2.1 Heat Dissipation

The RM-6740CL is a compact 640 by 480 camera. Since all the electronics have been packed in a compact package, the outer case of the camera can become hot due to heat dissipation. For optimal performance, JAI recommends using a cooling fan to set up a positive air flow around the camera and following the precautions below.

- Mount the camera on a large heat sink (camera bracket) made out of heat-conductive material like aluminum.
- Make sure the flow of heat from the camera case to the bracket is not blocked by a non-conductive material like plastic.
- Make sure the camera has enough open space around it to facilitate the free flow of air.

2.2.2 Connector Pin Configurations

2.2.2.1 12-Pin Connector

The RM-6740CL has a 12-pin Hirose connector for power input and signal integration. Pin #1 is Ground and pin #2 is +12V DC. The pin-out table is shown below.

Table 1 12-Pin Connector

Pin	Description	Pin	Description
1	GND	7	NC/VD in*
2	+12V DC	8	Strobe
3	GND (analog)	9	NC/HD in*
4	Video out	10	NC
5	GND (digital)	11	NC/Integration Control*
6	NC/VINIT in*	12	NC

*. Option 25-2 TTL inputs on 12-pin

2.2.2.2 Digital I/O Connector

The RM-6740CL has a 26-pin connector on the rear panel to output Camera Link data. The connector pin-out is shown in Table 2.

Table 2	Connector	and Pin-Out	Configurations
			5

	Camera Link Connector				
Pin #	Description	I/O	Pin #	Description	I/O
1	GND		14	GND	
2	Tx OUT 0-	Out	15	Tx OUT 0+	Out
3	Tx OUT 1-	Out	16	Tx OUT 1+	Out
4	Tx OUT 2-	Out	17	Tx OUT 2+	Out
5	Tx CLK OUT -	Out	18	Tx CLK OUT+	Out
6	Tx OUT 3-	Out	19	Tx OUT 3+	Out
7	SerTC+	In/RXD+	20	SerTC-	In/RXD-
8	SerTFG-	Out/TXD-	21	SerTFG+	Out/TXD+
9	CC1-	In/VINIT-	22	CC1+	In/VINIT+
10	CC2+	In/INTEG+	23	CC2-	In/INTEG-
11	CC3-	In/EX_HD-	24	CC3+	EX_HD+
12	CC4+	In/EX_VD+	25	CC4-	EX_VD-
13	GND		26	GND	

Note: SerTC: Serial To Camera

SerTFG: Serial to Frame Grabber

2.2.2.3 Analog Output Connector

The RM-6740CL has a BNC connector on the rear panel to output analog video signal (80 MHz). Analog output is available to drive auto-iris lenses and for troubleshooting.

Note: This analog signal is not an RS-170 (television format) signal that can be connected to a standard CCTV monitor.

2.2.3 Camera Link Cable

The 26CL-02-26 cable assembly has been standardized as the Camera Link cable. This cable has a 26-pin connector on both ends. This is a straight-through cable and the pin-out configuration is shown in Table 2. Contact JAI Inc. for cable lengths other than 2 meters.

Figure 2. 3M Camera Link Cable

Note: For CL versions, serial communication for camera control is done via the Camera Link connector on the rear panel of the camera.

2.2.4 Power Supplies and Power Cable Setup

2.2.4.1 Power Supplies

The RM-6740CL camera requires 12V DC power that is obtained through the 12-pin connector located on the rear panel of the camera. JAI power supplies feature a 122-240VAC / 12VDC 1.2A universal voltage power supply. JAI Inc. recommends the following power supplies:

PD-12UU	PD12UU (No 12-pin Hirose)	US Plug
PD-12UUP	PD-12UU with12-pin connector	US plug
PD-12UE	PD-12UU (No 12-pin Hirose)	European plug
PD-12UEP	PD-12UU with 12-pin connector	European plug

For users providing power through the 12-pin connector, the PD-12P, PD-12UEP and PD-12UUP power supplies are available with the 12-pin mating connector already attached to the leads from the power supply. The PD-12UU and PD-12UE power supplies can be connected to the JAI power cable via a terminal strip or directly.

When wiring the PD-12UU and PD-12UE power supplies directly, please note the following:

- The lead ends must be twisted together and tin-soldered for strength and electrical continuity.
- Shrink tubing or a similar insulator should be used to prevent exposed leads from touching and shorting.
- The +12V lead is marked with a red stripe or white lettering; be sure not to reverse the leads.
- All connections must be properly insulated to prevent shorting.

2.2.4.2 JAI Power Cables

If you are using JAI power cables such as the 12P-02S, please refer to the 12-pin connector pin-out table below. The cable pin-out diagram is shown in Figure 3 below. The color-coded leads use Gray for Ground and Yellow for +12V.

Figure 3. 12P-02S Interface Cable (optional)

Table 3 12P-02S Cable

	12P-02S Interface Cable				
Pin#	Lead Color	Function	Pin#	Lead Color	Function
1	Gray	GND	7	Black coax	VD Input
2	Yellow	+12V DC	8	White coax shield	Strobe Output
3	Red coax shield	AGND	9	White coax	HD Input*
4	Red coax	Video Out	10	Brown	N/C
5	Orange coax shield	DGND	11	Blue	Integration*
6	Orange coax	VINIT Input*	12	Black coax shield	N/C

*. Optional OP25-2 TTL inputs on 12-pin connector

Note: Make sure that the unused leads are not touching and that there is no possibility that exposed wires could cause the leads to short.

2.2.4.3 Building Your Own Power Cable

Refer to the 12-pin connector pin-out in Figure 3. Connect the Ground lead to pin #1, and the +12V DC lead to pin #2 of the 12-pin connector. Power must be DC-regulated, and of sufficient current to properly power the camera.

2.2.4.4 Attaching the Power Cable to the Connector

The 12-pin connector is keyed and will only fit in one orientation. Follow these directions to properly attach the power cable to the camera connector:

- 1. Rotate the connector while applying slight pressure until the keyways line up.
- 2. Press the connector into place until firmly seated.
- 3. Plug the power cord into the 100V AC socket. This will power the camera up.
- *Note:* If using a power supply other than the standard PD-12U Series from JAI, certain characteristics are required of the power supply and the wiring in order to properly power the camera. The camera requires 12V immediately upon start-up; no slow ramps. Once power is applied, the power supply must be able to support a 2A to 2.5A in-rush current for approximately 200µs to prevent the voltage at the camera from dropping below the 10.8V minimum required. Dropping below this will result in the camera's internal power supply lowering its impedance in an attempt to draw more current. Since no more current will be available, the voltage at the camera will drop instead. This will result in a steady-state hang-up which will damage the camera's power supply and cause the camera to cease operating or to operate in an unstable manner.

2.2.5 Attaching the Analog Video Output

When connecting the RM-6740CL to an analog frame grabber, use the BNC connector on the rear panel of the camera. The input of devices connected to the analog output should be balanced for 75 ohms termination. The multi-conductor cable 12P-02S from JAI can be used to transmit analog video, power, sync. signals, and serial communication. The mini coaxial leads in JAI multi-conductor cables are designed for short runs of no longer than 10 feet.

Note: Make sure that no extraneous wires are visible which could cause a short.

Note: Analog output clock frequency is 80MHz. Check the frame grabber manual to verify compatibility.

2.2.6 Attaching the Camera Lens

The RM-6740CL camera accepts 1/3" or larger format size C-mount lenses. To attach the C-mount lens² to the camera, carefully engage the threads and rotate the lens clockwise until it firmly seats on the mounting ring. Do not force the lens if it does not seat properly. Please note that some lenses with extremely long flangebacks may exceed the mounting depth of the camera.

2.3 Camera Rear Panel

2.3.1 Digital I/O Connector (Camera Link)

Refer to Section 2.2.2.2 for information on digital output connectors.

2.3.2 Analog Output Connector

The camera has a BNC connector on the rear panel to output analog video signal.

2.3.3 Power and External Sync Connector

Refer to Section 2.2.2.1 for information on the power and external sync connectors.

² C-mount to F-mount and C-mount to K-mount adapters are available for larger format lenses (35mm). Check with local photography dealers for these lens adapters.

3 Functions and Operation

3.1 Progressive Scanning

The RM-6740CL uses a state-of-the-art progressive scanning interline transfer CCD which scans all lines sequentially from top to bottom at one frame rate. Like a non-interlace computer screen, it generates a stable, crisp image without alternating lines and provides full vertical TV resolution of 480 lines. Due to the RM-6740CL's extremely high frame rate, it will not synchronize to most monitors.

The interline transfer architecture is also important to generate simultaneous shuttering. This is different from full frame transfer architecture which requires a mechanical shutter or strobe light in order to freeze the object motion.

The RM-6740CL outputs the progressive-scanned image with an electronic shutter in thirty-six different formats. See Table 4 for more information.

• Progressive-scanning digital and analog output

The CCD signal goes through A/D converters 10-bit in, 10-bit/8-bit out. The digital output is available via the Camera Link connector.

The analog output is the same as 75 ohms, 714mV format available from BNC and 12-pin connector.

• Full Progressive Scan

Normal scanning mode the RM-6740CL is for 640 x 480 pixels. The standard speed with dual-channel output is 200 frame/sec at the pixel clock of 40 MHz. The progressive scan reads every line from top to bottom and all lines are exposed with a single electronic shutter.

Figure 4. Full Progressive Scan Mode (A)

Partial Scan Mode

By selection, the camera has three partial scan modes: centered 160 lines, centered 224 columns, and centered 224 x 160 area. In partial scan mode B of Figure 5, the partial scan frame rate is 540 fps. Mode C is 500 fps, and D is 1250 fps.

Figure 5. Partial Scan Mode (B, C, and D)

Binning Mode •

The RM-6740CL series has horizontal and vertical binning. By selection, the camera has 1x2, 1x4, 2x1, 2x2, 2x4, 4x1, 4x2, and 4x4 binning.

Binning

Scan Mode					Output	t Clock
Binning	Scan Area	Active Pixels	Vertical Frequency (Hz)	Horizontal Frequency (KHz)	Digital (MHz)	Analog (MHz)
	Α	640x480	200	100		
	В	640x160	540	100		
NO DINNING	C	224x480	00	250		
	D	224x160	1250	250		
	Α	640x240	400	100		
1.2	В	640x80	1000	100	40	80
IXZ	C	224x240	1000	250	40	80
	D	224x80	2315	250		
	Α	640x120	712	100		
11	В	640x40	1596	100		
1X4	C	224x120	1602	250		
	D	224x40	3205	250		
	Α	320x480	200	100		
2.1	В	320x160	540	100		
ZX1	C	112x480	500	250		
	D	112x160	1250	250		
	Α	320x240	400	100		
2.2	В	320x80	1000	100	20	40
ZXZ	C	112x240	1000	250	20	40
	D	112x80	2315	250		
	А	320x120	712	100		
2×4	В	320x40	1596	100		
284	C	112x120	1602	250		
	D	112x40	3205	250		
	А	160x480	200	92.59		
4~1	В	160x160	540	92.59		
481	C	56x480	500	208.33		
	D	56x160	1250	208.33		
	A	160x240	400	92.59		
4x2	В	160x80	1000	92.59	10	20
	C	56x240	1000	208.33	10	20
	D	56x80	2315	208.33		
	А	160x120	712	92.59		
1.4	В	160x40	1596	92.59		
4x4	C	56x120	1602	208.33		
	D	56x40	3205	208.33		

Table 4RM-6740CL Scan Mode

3.2 Electronic Shutter

The RM-6740CL has a substrate drain-type shutter mechanism which provides a superb picture at various speeds without smearing. A built-in manual shutter speed control selects the electronic shutter rate.

Shutter Speed Number	Manual	Async.
0	1/frame rate	Async No Shutter
1	1/250 sec	1/64,000 sec
2	1/500 sec	1/32,000 sec
3	1/1,000 sec	1/16,000 sec
4	1/2,000 sec	1/8,000 sec
5	1/4,000 sec	1/4,000 sec
6	1/8,000 sec	1/2,000 sec
7	1/16,000 sec	1/1,000 sec
8	1/32,000 sec	1/500 sec
9	1/64,000 sec	PWC (pulse width control)

Table 5Electronic Shutter Speeds

With VINIT high (CC1), the CCD keeps discharging. With an active low pulse to VINIT, the camera resets and purges the charge momentarily. Then it starts integrating for the period of shutter control set by either an external pulse width or internal shutter control. Progressive scanning permits a full 480 lines of vertical resolution, as compared to an interlaced CCD camera which captures only half the vertical lines per shutter.

3.3 Integration

The CCD imager of the RM-6740CL can be exposed for longer than the normal scan timing of 1/200 sec. This integration feature provides extra sensitivity for dark-environment applications. The progressive-scan imager permits a full frame of resolution in non-interlace format. Integration is achieved by controlling CC2 Camera Control line through the Camera Link cable to low (GND) or providing pulse-width control up to 1 sec. Please refer to Table 1 in Section 2.2.2 for pin-out information on the 12-pin connector.

3.4 External Sync and Pixel Locking

The RM-6740CL accepts an external sync of standard HD and VD on CC3 and CC4 of the Camera Link connector for general locking to an external source. The frequency requirement is shown in Table 4. The tolerance is $\pm 2\%$ horizontal frequency.

3.5 Asynchronous Reset

The RM-6740CL camera includes three modes to control the asynchronous reset and shutter speed:

- Async No Shutter
- Internal Shutter Speed Control
- External VINIT with Pulse Width (No-Delay Shutter) and ROI

3.5.1 Async No Shutter

3.5.2 Internal Shutter Speed Control

The camera operates the reset and shutter in the same way as the external pulse width control mode. When the external VINIT pulse is applied, internal VINIT is latched to HD and the internal VINIT is delayed to set up the shutter speed period. The shutter speed is controlled by communication software from "1" to "8." Video output timing starts right after the internal VINIT and single shots. FDV is output at the internal VINIT timing.

3.5.3 External VINIT With Pulse Width (No-Delay Shutter) and ROI (Read-out Inhibit)

For multiple-camera applications such as 2D or 3D measurement and multi-angle inspection, simultaneous image capturing at exact shutter timing for all cameras is a critical requirement. The RM-6740CL's asynchronous pulse-width control mode provides no-delay shutter as standard. Regardless of the internal pulse timing, the camera discharges at the VINIT leading edge and transfers charges at the trailing edge of the pulse. Even though each camera runs with slightly different H and data clock timing, the image capturing is exactly simultaneous.

Figure 6. No-Delay Shutter

The RM-6740CL camera also has read-out-inhibit control (ROI) to control the vertical clock start (Async Shutter #9). When ROI is low, V-clock is stopped and the transferred charges remain in the vertical shift registers, which work like CCD memory. When the ROI is high, it clocks out the CCD data. This helps a single frame grabber process multiple images in pipeline processing (sequential process).

Note: When the ROI function is not used, make sure that the INTEG/ROI CC2 input is kept logic high during Async. pulse width control mode.

Figure 7. Read-Out Inhibit

3.6 Dynamic Range Control

The typical interline transfer CCD has fixed noise levels based on dark current (thermal or KT noise), pattern noise, and the operating clock speed. In general, the level of the 20 MHz pixel clock CCD at room temperature is around 20 to 50 electrons. The maximum capacity of CCD charges is limited by the well capacity at saturation. The range is limited by the structure and the pixel size.

The RM-6740CL uses a CCD with 7.4 μ m x 7.4 μ m pixels and a two-phase vertical shift register structure. The well capacity is 20,000 electrons. The theoretical dynamic range is 20,000:30 = 666:1 (56 dB).

A typical CCD camera does not use the full dynamic range due to the nominal gain and the output specification such as RS-170. The typical CCD camera's gain is set at 16 to 22 dB and the RS-170 video level is 714 mV. Using 20 dB gain for the calculation, CCD output is limited to 714/10 = 71.4 mV. Since the CCD's saturation voltage is 400 mV to 500 mV, it uses less than 1/5 of the full dynamic range.

Machine vision and outdoor applications, cannot afford to miss image information behind the saturation, which is why the dynamic range adaptation is critical.

3.6.1 Programmable Look-Up Table (LUT) and Knee Control

The RM-6740CL has a built-in LUT (look-up table) for dynamic range control.

At a specific gain setting, the offset (minimum level.... dark point) and A/D reference top voltage (maximum level... saturation point) are set to 10-bit A/D input so that the full dynamic range of the CCD is utilized at 10-bit references as the input and the LUT output is converted into 8-bit to adjust the gamma correction.

The look-up table has two knee points (variable gamma selection) that allow the 10-bit input to be segmented into three regions. The look-up table selection can be made by knee curve direct input.

3.7 Camera Timing Charts

Refer to Tables 6-10 for timing values that can be applied to the variables in the following timing charts.

1. Video Output

2. External HD Locking & Exteranl VD Reset

3. Async Reset

>> Async No Sł	nutter (async shutter 0)
External Vinit	aA
Discharge	
Transfer Gate	
Strobe	
FDV	
Analog Video	
>> Async Norm	al Shutter (async shutter 1-8) & Async No-delay Shutter (async shutter 9)
External Vinit	
Discharge	
Transfer Gate	
Strobe	aD
FDV	
Analog Video	
ROVIntegration	
>> Read-Out In	hibit (ROI, async shutter 9)
External Vinit	
Discharge	
Transfer Gate	
Strobe	
FDV	
Analog Video	
ROI/Integration	aJ aK

4. Video Output Order

Scan Mode		Output		Horizoi	ntal (Pixe	els)					
Binning	Scan			Digital			Analo	g			
	Area	Digital	Analog	Α	В	C	F*	G	Н	I	J
No binning	А	40Mhz	80Mhz	400	80	320	58	16	86	640	800
	В	25ns	12.5ns	400	80	320				640	800
	С			160	48	112				224	320
	D			160	48	112				224	320
1x2	А			400	80	320				640	800
	В			400	80	320				640	800
	С			160	48	112				224	320
	D			160	48	112				224	320
1x4	А			432	112	320				640	864
	В			432	112	320				640	864
	С			192	80	112				224	384
	D			192	80	112				224	384
2x1	А	20MHz	40MHz	200	40	160	20	8	52	320	400
	В	50ns	25ns	200	40	160	20		52	320	400
	С			80	24	56	22		50	112	160
	D			80	24	56	22		50	112	160
2x2	А			200	40	180	20		52	320	400
	В			200	40	180	20		52	320	400
	C			80	24	56	22		50	112	160
	D			80	24	56	22		50	112	160
2x4	А			216	56	160	20		52	320	432
	В			216	56	160	20		52	320	432
	C			96	40	56	22		50	112	192
	D			96	40	56	22		50	112	192
4x1	А	10MHz	20MHz	100	20	80	10	4	26	160	200
	В	100ns	50ns	100	20	80				160	200
	C			40	12	28				56	80
	D			40	12	28				56	80
4x2	А			100	20	80				160	200
	В			100	20	80				160	200
	С			40	12	28				56	80
	D			40	12	28				56	80
4x4	А			108	28	80				160	216
	В			108	28	80				160	216
	С			48	20	28				56	96
	D			48	20	28				56	96

Table 6Video Output (A to J)

*. D, E=0 pixels.

Video Output (K to T)

						Vertic	al (Pixel	s)		
Scan Mo	ode	Out	put		Digital			Analog		
Binning	Scan Area	Digital	Analog	к	L	M*	P†	R	S	т
	А	40Mhz	80Mhz	500	20	480	3	14	480	500
No binning	В	25ns	125ns	185	25	160	9	13	160	185
	С			500	20	480	3	14	480	500
	D			200	40	160	9	28	160	200
	А			250	10	240	3	4	240	250
1v7	В			100	20	80	6	11	80	100
172	С			250	10	240	3	4	240	250
	D			108	28	80	4	21	80	108
	А			130	10	120	3	4	120	130
1 - 1	В			58	18	40	5	10	40	58
1,74	С			130	10	120	3	4	120	130
	D			65	25	40	4	18	40	65
	А	20MHz	40MHz	500	20	480	3	14	480	500
2~1	В	50ns	25ns	185	25	160	9	13	160	185
281	С			500	20	480	3	14	480	500
	D			200	40	160	9	28	160	200
	А			250	10	240	3	4	240	250
2,42	В			100	20	80	6	11	80	100
	С			250	10	240	3	4	240	250
	D			108	28	80	4	21	80	108
	А			130	10	120	3	4	120	130
2~1	В			58	18	40	5	10	40	58
284	С			130	10	120	3	4	120	130
	D			65	25	40	4	18	40	65
	А	10MHz	20MHz	500	20	480	3	14	480	500
1~1	В	100ns	50ns	185	25	160	9	13	160	185
471	С			500	20	480	3	14	480	500
	D			200	40	160	9	28	160	200
	А			250	10	240	3	4	240	250
4~2	В			100	20	80	6	11	80	100
772	С			250	10	240	3	4	240	250
	D]		108	28	80	4	21	80	108
	A]		130	10	120	3	4	120	130
1~1	В]		58	18	40	5	10	40	58
484	С]		130	10	120	3	4	120	130
	D			65	25	40	4	18	40	65

*. N, O=0 pixels. †. Q=3 lines.

Scan Mo	ode		Horiz	ontal	Exte	rnal HD	Locking 1	Timing (Pi	xels)
Binning	Scan Area	Pixel Clock	Freq. (kHz)	Time (?sec)	eA	eВ	eC	eD	еE
No binning	А	40Mhz	100	10	<20ns.	400	32.	368	13
	В	25ns	100	10		400		368	-
	C		250	4		160		128	1
	D		250	4		160		128	
1x2	А		100	10		400		368	1
	В		100	10		400		368	
	С		250	4		160		128	
	D		250	4		160		128	1
1x4	А		92.6	10.8		432		400	1
	В		92.6	10.8		432		400	1
	С		208.3	4.8	-	192		160	-
	D		208.3	4.8	-	192		160	-
2x1	А	20MH	100	10	<20ns	200	16	184	12
	В	z 50ns	100	10	-	200		184	12
	С		250	4		80		64	11
	D		250	4	-	80		64	11
2x2	А		100	10	-	200		184	12
	В		100	10	-	200		184	12
	С		250	4	-	80		64	11
	D		250	4	-	80		64	11
2x4	А		92.6	10.8	-	216		200	12
	В		92.6	10.8		216		200	12
	С		208.3	4.8		96		80	11
	D		208.3	4.8		96		80	11
4x1	А	10MH	100	10	<20ns	100	16	84	15
	В	Z	100	10		100		84	1
	С	100ns	250	4	-	40		24	-
	D		250	4	-	40		24	-
4x2	Α		100	10		100		84	-
	В	-	100	10		100		84	-
	С	-	250	4		40		24	-
	D	1	250	4		40	1	24	1
4x4	А	1	92.6	10.8		108	1	92	1
	В	1	92.6	10.8		108	1	92	1
	С	1	208.3	4.8	1	48	1	32	1
	D	1	208.3	4.8	1	48	1	32	1

Table	8
-------	---

External HD Locking and External VD Reset (eA to eE)

Table 9	9

External HD Locking (eF to eJ)

Scan M	Scan Mode		Vert	ical	Vertical VD Reset Timing (Lines)				nes)
Binning	Scan Area	Pixel Clock	Freq. (kHz)	Time (?sec)	eF	eG	еH	el	eJ
No binning	А	40Mhz	200	5000	<2	500	9	491	1
	В	25ns	540	1850		185		176	-5
	C		500	2000		500		491	1
	D		1250	800		200		191	-5
1x2	А		400	2500		250		241	1
	В		1000	1000		100		91	-2
	C		1000	1000		250		241	1
	D		2315	432		108		99	0
1x4	А		712	1404		130		121	1
	В		1596	626.4		58		49	-1
	C		1602	624		130		121	1
	D		3205	312		65		56	0
2x1	А	20MHz	200	5000	<20ns	500	9	491	1
	В	50ns	540	1850		185		176	-5
	C		500	2000		500		491	1
	D		1250	800		200		191	-5
2x2	А		400	2500		250		241	1
	В		1000	1000		100		91	-2
	C		1000	1000		250		241	1
	D		2315	432		108		99	0
2x4	А		712	1404		130		121	1
	В		1596	626.4		58		49	-1
	C		1602	624		130		121	1
	D		3205	312		65		56	0
4x1	А	10MHz	200	10	<20ns	500	9	491	1
	В	100ns	540	10		185		176	-5
	C		500	4		500		491	1
	D		1250	4		200		191	-5
4x2	А		400	10		250		241	1
	В		1000	10		100		91	-2
	C		1000	4		250		241	1
	D	1	2315	4	1	108	1	99	0
4x4	А	1	712	10.8	1	130		121	1
	В	1	1596	10.8	1	58		49	-1
	C	1	1602	4.8	1	130		121	1
	D	1	3205	4.8	1	65		56	0

Table 10	Async Reset

Scan Mo	ode				Async	: Reset Tim	ing			
	Scan	aA	aB	aC	aD	aE	aG	aH	(lines)	al
Binning	Area	(lines)	(µsec)	(µsec)	(µsec)		(lines)	s1-8†	s9‡	(lines)*
No binning	Α	>1 & <2	43.2	4.8	1.9	s1-8:	s1=1	20	>aH (s8)	>aH (s8)
	В		43.2	4.8	1.9	>1 line	s2=2	19	$\pounds < aH$	+1 & <
	С		16.0	4.0	3.8		s3=5 s4=12	18	(50) + 1	a⊓(so) + 2
	D		16.0	4.0	3.8		s5=24	32		
1x2	Α		43.2	4.8	1.9		s6=49	10		
	В		43.2	4.8	1.9		s7=99 s8=199	17		
	C		16.0	4.0	3.8		s9=PW	8		
	D		16.0	4.0	3.8			25		
1x4	Α		46.4	4.8	2.7			10		
	В		46.4	4.8	2.7			16		
	C		19.2	4.0	4.6			8		
	D		19.2	4.0	4.6			22		
2x1	Α	>1 & <2	43.2	4.8	1.9	s1-8: >1	s1=1	20	>aH (s8)	>aH (s8)
	В		43.2	4.8	1.9	line	sZ=Z s3=5	19	tt < aH (s8) + 1	+1 と < aH(s8) +
	C		16.0	4.0	3.8		s4=12	18	(30) 1	2
	D		16.0	4.0	3.8		s5=24	32		
2x2	Α		43.2	4.8	1.9		s6=49 s7-99	10		
	В		43.2	4.8	1.9	_	s8=199	17		
	C		16.0	4.0	3.8	_	s9=PW	8		
	D		16.0	4.0	3.8	_		25		
2x4	Α		46.4	4.8	2.7	_		10		
	В		46.4	4.8	2.7			16		
	C		19.2	4.0	4.6	_		8		
	D		19.2	4.0	4.6			22		
4x1	Α	>1 & <2	43.2	4.8	1.9	s1-8: >1	s1=1	20	>aH (s8)	>aH (s8)
	В		43.2	4.8	1.9	line	sZ=Z s3=5	19	tt < aH (s8) + 1	+1&< aH(s8)+
	C		16.0	4.0	3.8	_	s4=12	18	(50) · ·	2
	D		16.0	4.0	3.8		s5=24	32		
4x2	Α		43.2	4.8	1.9		s6=49 s7=99	10		
	В		43.2	4.8	1.9	_	s8=199	17		
	C		16.0	4.0	3.8		s9=PW	8		
	D		16.0	4.0	3.8			25		
4x4	Α		46.4	4.8	2.7			10		
	В		46.4	4.8	2.7			16		
	C		19.2	4.0	4.6			8		
	D		19.2	4.0	4.6			22		

*. aJ < 1 sec (recommended value)

aK = > 1 line

†. s1-9 means async shutter 1-9.

PW means pulse width of external vinit. ‡. aE = s1-8 < 1 line. s9 <125 nsec. aF = 500 nsec.

4 Control Software Installation and Use

4.1 Introduction

The RM-6740CL series cameras are Dual-Tap AccuPiXEL, high-resolution, progressive scan cameras with JAIproprietary LUT control and other excellent features. The software for these cameras was developed to function as standard software for the entire Dual-Tap AccuPiXEL series, and can open either the RS-232 serial port (COM) or Camera Link. Camera Link users must physically install the Camera Link frame grabber board into the PC. They must also install the Camera Link API (Cam2Net) (clserXXX.dll) software. These cameras are specially designed to capture images in progressive scan (non-interlace) format, producing a full frame of electronic shutter images, as well as normal images.

The AccuPiXEL interface appears different, and has various capabilities, depending on the camera model the software is accessing.

4.2 Software Installation

Following are instructions to install the Dual-Tap AccuPiXEL series camera-control software on a PC.

4.2.1 Before Installing the Dual-Tap AccuPiXEL Series Camera-Control Software

Before installing the Dual-Tap AccuPiXEL series camera-control software, please note the following requirements.

- Dual Tap AccuPiXEL series camera control software is tested with Microsoft Windows 2000, and Windows XP operating systems.
- The software requires one available communication port that is not in conflict with other peripherals such as the mouse or modem.
- Installation of the software requires 2.4 MB of free space on the PC hard disk.

4.2.2 Installing the Software

To install the Dual-Tap AccuPiXEL series camera-control software, obtain the software from the JAI web site and run "Setup.exe." The installer will direct you to install the application code.

If dual tap software is already installed on your computer, uninstall the software using the steps in the Uninstall section.

Note: The link to the frame grabber must be configured after the new software installation. The program asks for the location.

- 1. To obtain the Dual Tap software visit the JAI Inc. web site at http://www.jai.com
- 2. Hover over the Camera Solutions label in the top menu bar and select "Support & downloads > Downloads" from the drop-down menus that appear underneath
- 3. Scroll through the list to locate any RM-6740CL series camera (list is organized by scan type and color)
- 4. In the Software download column (far right) click the Dual-Tap software listing

Note: The latest version of Dual-Tap AccuPiXEL software will be listed. This manual uses v2.6.0 in its examples. If a later version is downloaded, some of the screens may vary slightly from those shown in the manual.

5. Select either *Open* or *Save* on the install dialog box

Note: The file is compressed, and uses the decompression program installed on your computer. WinZip is used in this example. Windows XP has an unzip capability as part of the operating system.

6. Open the file.

Note: It is not necessary to decompress the DualTapAccuPiXEL.CAB file

Figure 8. The Setup icon installs Dual Tap AccuPiXEL v 2.6.0

🛛 WinZip	- DualTa	p AccuPixe	2.6.0 S	ETUP.zip				. 🗆 🛛
<u>ile A</u> ctions	Options	Help						
2	6	()			- 🍲			
New	Open	Favorites	Add	Extract	View	Install	Wizard	
Vame 💊				Modifi	ed	Size	Ratio	Packed
DualTapA	ccuPiXEL.CA	AB		3/26/:	2007 1:23 PM	2,416,959	0%	2,409,
Readme.t	xt			3/26/:	2007 1:38 PM	3,434	60%	1,373
🤒 setup. exe				2/23/:	2004 12:00	139,776	54%	64,879
Setun Ist				3/26/2	2007 1:23 PM	4,646	78%	1.010

7. Follow the Setup instructions.

Figure 9. AccuPiXEL Setup screen

DualTa	p AccuPiXEL	2.6.0 Setup
😹 DualTap Accu	PiXEL 2.6.0 Setup	
Begin the installati	on by clicking the button below. Click this button to install DualTap AccuPi> destination directory.	EL 2.6.0 software to the specified
C:\Program Files\D	ualTapAccuPiXEL\	Change Directory
	E <u>x</u> it Setup]

Figure 10. Follow the installation directions

o darrap i	SCOPTAGE 2.0.0 SET		
Setup cap	weicome to the Duai ap	ndate shared files if they	on program. are in use.
Before pro	ceeding, we recommend th	hat you close any applical	cions you may

4.2.3 Installing the Camera Link API .dll (clserXXX.dll)

To install the Camera Link control software with frame grabber software, please consult the frame grabber company or JAI Inc.

4.2.4 Running Dual Tap AccuPiXEL

Click Start=>All Programs=>DualTapAccuPiXEL=>DualTapAccuPiXEL to run the software

The Dual Tap software fails to start if the frame grabber .dll file (clserc2n.dll if you are using Cam2Net software) is missing. This may happen because the link to the .dll is lost when the previous version of dual tap software is uninstalled, or if a frame grabber has not been installed. If JAI Cam2Net software is being used and was installed with the default pathway, the screen grabber is located at C:\Windows\System32. If necessary use the Window Search feature to find the needed .dll file. Probably the most effective search is to look for the .dll extension. The screen grabber installation includes the essential .dll file.

DualTap <i>l</i>	IccuPiXEL 🛛 🗙
	Cannot open GigE communication. Please make sure, that your GigE device is connected and clserc2n.dll is present in Windows' system32 directory.
	SYSTEM32
	Eile Edit View Favorites Tools Help
	Search 🔂 Folders
	Address 🛅 C:\WINDOWS\SYSTEM32
	System Tasks Image: System Tasks Image: System Tasks Image: System Tasks Image: Hide the contents of this folder Image: System Tasks Image: Add or remove programs Image: Search for files or folders Image: Search for files or folders Image: Search for files or folders

4.2.5 Uninstalling the Software

Uninstall old versions of the Dual-Tap software before installing the new version. To uninstall the old version of the Dual-Tap AccuPiXEL series camera-control software from the control panel, follow the steps below. The newest version of the software can also be uninstalled in the same manner.

- 1. Open "Add or Remove Programs" in the control panel.
- 2. Select Dual-Tap AccuPiXEL software from the list of the installed software.
- 3. Click the "Change/Remove" button

	^	Currently installed programs:	Show up <u>d</u> ates	Sort by: Name	×
Change or Remove Programs		🔏 DualTap AccuPiXEL 2.5.0 (C:\Program Files\DualTapAc	cuPiXEL\)	Size (5,198.00MB
-				Used Last Used On	frequently =
Add New		To change this program or remove it from your computer, click	Change/Remove.	Chang	je/Remove

5 Graphical User Interface

5.1 GUI Features

The following is a list of camera functions that PC serial commands can control. The Dual-Tap AccuPiXEL series Camera Link cameras use differential serial communication through the Camera Link connector on the rear panel of the camera. Each camera displays the camera number at the top of the interface window. Since the following screens have been used in multiple manuals, the specific camera number has been removed.

- Exposure Control
 - Mode
 - Shutter Speed
 - Binning
 - Scan Area
 - Direct
- Gain Control
 - A (dB)
 - B (dB)
- Ref. Voltage
 - A
 - B
- LUT
 - Positive
 - Negative
 - Table
 - X1, X2, Y1, Y2
 - Send Knees
 - Graphic Knee Adjustment
- Channel Balance
- Report
 - TX, RX
- Video Depth
 - 8-bit
 - 10-bit
- Control Signals

5.2 Starting Dual-Tap AccuPiXEL Software

After installing the Dual-Tap AccuPiXEL software, start the program in Microsoft Windows XP by going to: Start->All Programs->DualTapAccuPiXEL 2.6.0. Click on DualTapAccuPiXEL 2.6.0.

Figure 11. Starting Dual-Tap AccuPiXEL from the desktop

All Programs 🌔	Cophos Anti-Virus	•	
	👼 DualTapAccuPiXEL	¢.	🛥 DualTapAccuPiXEL 2.6.0
	😕 Acrobat Distiller 7.0		
都 start 🔰 🙆	🔊 Adobe Acrobat 7.0 Professional		

5.3 Setting up the Camera Link software

When the software starts, a small window displays on the screen. Select CamLink to access the RM-6740CL camera. It is not possible to set up the CL camera using the COM-Port or GigE selection.

Figure 12. Initial Dual Tap AccuPiXEL screen.

🖻 DualTap Ac	cuPiXEL 📒	
Connectivity Type	Board Index	
CamLink COM-Port	0	GO!
CamLink GigE		

5.3.1 CamLink Mode

• When CamLink mode is selected, the camera searches for the driver to the frame grabber. Click the GO button. Choose the .dll for the desired frame grabber.

Note: The Dual-Tap AccuPiXEL software automatically opens the CameraLink directory if it is installed in the default location, since this where the .dll software is located.

Figure 13. Choose the desired frame grabber DLL

Open	? 🛛
Look jn: CameraLink. Wy Recent Documents Desktop My Documents My Computer	★ È [*] E •

• If the frame grabber that corresponds to the dll is not present, an error message displays.

Figure 14. The error message if the .dll application is missing.

DualTap	DAccuPiXEL
♪	Cannot open CameraLink. Please make sure that your CameraLink API DII file is matched with the frame grabber board in your PC.
	ОК

• Click Start=>All Programs=>DualTapAccuPiXEL=>DualTapAccuPiXEL to open the Dual Tap software.

5.3.2 GigE Mode

GigE mode provides an easily connectable, high-bandwidth imaging solution. Video data is sent as data packets over an industry-standard GigE network. Point-to-point (unswitched) transmission is up to 100 meters. With gigabit Ethernet switches, the transmission distance is virtually unlimited.

It is necessary to start the frame grabber software before the GigE mode recognizes the camera.

Note: If the Cam2Net frame grabber is used the GigE mode is not supported for the CL camera.

5.4 Operating The Control Software

5.4.1 Choose the CamLink mode

Choose the CamLink mode from the mode screen when the Dual-Tap AccuPiXEL camera control software starts. Click the GO button.

5.4.2 Check Current Camera Setting

Click the "Report" button to get the current camera setting from the camera.

Figure 15. The Report button provides camera setting information in the TX/RX frame.

5.4.3 Exposure Control

The exposure control allows you to select Manual or Asynchronous modes using the appropriate radio button.

5.4.3.1 Manual and Async

- Async mode opens and closes the shutter based on the camera settings until it is shut off or reset.
- Manual mode opens and closes the shutter based on manual or mechanical triggers.

Figure 16. Manual and Async exposure control

Mode	Direct
Manual	2079
Manual	[=0
Async	

5.4.3.2 Shutter Speed

The software offers 0-9 and Direct Shutter selections under Exposure Control when Manual is selected. Generally each shutter number is twice as fast as the previous shutter speed (so a setting of 3 would be twice as fast as 2, and half as fast as 4). For specific shutter speeds, see Table 5 in Section 3.2.

Manual shutter speed 0 is no shutter mode; Async shutter speed 0 is Async No Shutter mode; Async shutter speed 1~8 is Async normal shutter mode; Async shutter speed 9 is Async no delay shutter mode (pulse width control).

Figure 17. Exposure Control, Shutter Speed

Mode	Direct
Manual	2079
Shutter Speed	
0	
3	<u> </u>
4	-ba
5 6	
7	20
8	255 0
9 Direct Shutter	~

Direct Shutter

Manual mode makes Direct Shutter available. Using Direct Shutter allows the user to configure the exposure based on the number of lines. The direct slider becomes active to permit you to set the number of lines by using the slider or entering a number in the text box above the slider.

<u>File Option Connectivity</u>	About
Exposure Control	
Mode	Direct
Manual 🗾 💌	792
Shutter Speed Direct Shutter	

Pulse Width Control

PWC mode allows shutter control using an external trigger. The setting should be less than the combined exposure and trigger time for a single frame. All of the Exposure Control settings are available when the PWC shutter speed is selected. PWC is available only in Async mode.

Mode	Direct
Async	2079
Shutter Speed	. []*
0	
3	~
4	-ba
6	
7	20
8	255 0
PWC	

Figure 18. Select PWC from Shutter Speed in the Async mode.

Binning

Binning is a process that combines the charge from adjacent pixels to create a single large pixel for higher quality video. Settings are available in the Exposure Control/Binning drop-down list box. Section 3.1 describes the binning options available for the RM-6740CL series. The interface for the binning options is shown below.

Figure 19. Use the binning drop-down list box to select a setting.

Mode	Direct
Async	2079
Shutter Spe	ed []°
0	
Binning No Binnina	Scan Area
1x2	207
1×4 2×1 2×2	itive 255
2×4 4×1 4×2	191
4 × 4	✓

Scan Area

There are four pre-set scan areas available for the RM-6740CL, including full-scan and partial scan areas. Select a scan area using the drop-down list box. Preset scan areas have a letter designator. See section 3.1 for a description of the scan areas.

Mode		Direct
Async		2079
Shutter Sp	beed	[] °
0		14
Binning	Scan A	rea
No Binnin	ng 💌 🗛	J []
	A	201

5.4.4 Gain Control

5.4.4.1 Gain

Gain refers to how and how much an electronic signal is amplified. The Gain Control box allows you to change the Gain value by moving the slider or entering the value directly into the text box.

5.4.4.2 Gain Auto Balancing Button

Click the "ChBalanceD" or "ChBalanceE" button to enable Gain Auto balancing. Once it is finished, the software will disable gain auto balancing automatically. The button changes from D to E, depending what channel was most recently balanced.

ChBalanceD	Report Video Outpu	ut ⊂ 8-bit
TX :RPST RX :oRR00DE002800E2002:	38059792 FFFFFFFFFFFFFFFFFFF 081	F01F3
CommPort/CameraLink	Ch Balance: Enabled	1:08 PM
ChBalanceE	Report Video Outp	out C 8-bit 10-bit
TX :DABL RX :0		
CommPort/CameraLink	Ch Balance: Disabled	1:12 PM

5.4.5 Ref. Voltage

Ref. Voltage is used to adjust the black level. Channel A voltage is the master, channel B is the slave. To change the value, move the slider or enter the value directly into the box. The camera automatically adjusts Channel B offset voltage, every other frame. The lower the number, the lower the black level. Most users attempt to adjust the black level so that any interference is just below the black level and does not become part of the final image. The camera should warm up for half an hour before adjusting reference voltage.

Figure 20. Ref. Voltage slider

5.4.6 LUT (Look-Up Table)

Use the radio buttons to select either a normal, "positive" image, or a reversed, "negative" image.

The Knee Control box allows you to set your own knee values in the LUT.

5.4.6.1 LUT (Look-Up Table) Selection

The LUT Selection box allows you to choose between linear or gamma 0.45 output.

Linear Selection

The Linear option gathers light in a proportional manner as shown in the preceding figure.

Gamma Selection

The Gamma.45 option is designed to cause the camera to gather light in a manner that produces a result very similar to what the human eye sees. The heavier curved blue line represents the Gamma.45 LUT adjustment.

Knees

The knee setting allows two adjustments in the light gathering configuration of the LUT to allow for corrected video as it is captured. It is possible to set knees on any of the drop down settings, although selecting the menu settings without adjusting the knees sends the defaults if the Send Knees button is clicked. You may enter X1, Y1, X2, Y2 values directly to adjust the knee curve, this is a useful way to copy the settings from another camera. When you have chosen the value you want and are ready to set this value to the camera, click the "Send Knees" button.

5.4.7 Video Depth

The RM-6740CL LUT can be used with 8-bit output. If 10-bit output is selected the LUT area becomes inactive, as shown in the following figure.

5.4.8 Report

5.4.8.1 Automatic Report

The report frame of the window often verifies recent actions without being prompted. An example of an action that is displayed without an inquiry (pressing the Report button) would be changing the camera to the Gamma.45 setting, or many of the other actions in the LUT table, such as setting a negative or positive image, or sending knees.

Figure 24. Automatic camera report

5.4.8.2 Report Button

Press the Report button for a complete description of the current camera configuration. Use the "Description" column of the RM-6740CL Command List provided in Table 11, Section 6.1 to interpret the results.

5.5 Main Menu: "File"

5.5.1 Load and Save Page

Click on the File menu and choose Load Page to load a saved set of camera parameters. The Page 1 slot contains the power up default settings.

Figure 25. Load Page

5.5.2 Save Page

Click on the File menu and choose Save Page to change a saved set of camera parameters. The Page 0 slot is used to store factory default settings, and can not be overwritten without supplying a password. The Page 1 slot contains the power up default settings, and can be changed to allow different power up defaults. The remaining five pages can be used as desired to save configurations.

Figure 26. Save Page

ile Option Cor	nnectivity About	
Load Page 🔸	Gain	Ref. Voltage
Save Page 🔸	Page 0 - Factory Default	A B
Read Page 🕨	Page 1 - Power up Default 5	40 41
Exit	Page 2 9* Page 3	
0	Page 4	
Binning S	Page 5 Page 6	

5.5.3 Read Page

Click on the File menu and choose Read Page to read the EEPROM for a specific page. Using this command does not change the saved configuration.

🖷 DualTap Acc		
File Option Con	nectivity About	
Load Page 🔸 Save Page 🔸	Gain Direct A (dB) B (dB	Bef. Voltage
Read Page 🕨	Page 0 - Factory Default Page 1 - Power up Default	5 40 41
0	Page 2 Page 3	T T
Binning S No Binning 💌	Page 4 Page 5 Page 6	

5.6 Main Menu Option

Click on the "Option" menu and choose "Password" to gain access to load Page 0 of the camera parameters. Contact JAI Inc. at 1-800-445-5444 for password access. The password allows access to the EEPROM to rewrite factory default settings.

File	Option	Connectivity About		
Exp	Pass	word	Gain	Ref. Voltage
Mo	Mo Task Dathaun		A (dB) B (dB)	A B

5.6.1.1 Test Pattern

From the main menu, select "Option" and click 'Test Pattern" to view or disable the test pattern. This menu option is disabled if a monitor is not connected to the camera's video output.

5.6.1.2 Pixel Output Order

From the main menu, select "Option" and "Video Data Output Order" then choose "<----" or "<----" or "<----" or "<----"

"<----" = First video data are pixel no. 1 and no. 321.

"<---->" = First video data are pixel no. 1 and no. 640.

"<<----" = First video data are pixel no. 1 and no. 2.

Figure 27. Video output order

File	Option	Connectivity About		
-Exp Password		word	Gain	Ref. Voltage
Mo	Test	Pattern	A (dB) B (dB)	A B
IMa	Video Data Ouput Order 🕨		V 4 C	41

5.7 Main Menu "Connectivity"

Click on the "Connectivity" menu to view the buffer size. Some frame grabbers have a small buffer size and require a special communication algorithm. Use the "Receive Buffer Size" menu to set the buffer size. If you have trouble communicating with the camera, then select the "Receive buffer is small" option.

Figure 28. Buffer Size

🖷 DualTap	AccuPiXEL	- TM	6740		
File Option	Connectivity	Abou	t		
Exposure Co	Camera Lin	ik →	Receive Buffer Size 🔸	Receive buff	^f er is small

5.8 Main Menu "About"

5.8.1.1 Camera Model

From the main menu, select "About" and click "Camera Model" to check the camera information. The details display in the information frame near the bottom of the window.

Figure 29. Camera Model

File Option Connectivity	About	
Exposure Control	Camera Model	Voltage
Mode [CPU Firmware Version	В
Manual 👤	About Control Software	41

5.8.1.2 CPU Firmware Version

From the main menu, select "About" and click "CPU Firmware Version" to check the CPU firmware information.

Figure 30. CPU Firmware Version

File Option Connectivity	About	
Exposure Control	Camera Model	Voltage —
Mode [CPU Firmware Version	В
Manual	About Control Software	41

5.8.1.3 About Control Software

From the main menu, select "About" and click "About Control Software" to check the software information.

Figure 31. Control Software Version

🖷 DualTap AccuPiXEL	- TM6740	
File Option Connectivity	About	
Exposure Control	Camera Model CPU Firmware Version	VoltageB
Manual	About Control Software	40
Shu Provide About This Soft Binr DualTap AccuProver. 2.5.0 No This software is All rights reserv	f tware iXEL GUI developed by JAI PULNiX, Ir red. (C) 2003-2006	. .

5.8.2 Exit

From the main menu, select "File," and click "Exit" to exit the software.

6 Serial Communication Kit

6.1 RM-6740CL command list

The RM-6740CL camera can be controlled via RS-232 commands. The Start character is always ":" and the End character is always "cr" (return). For example, to set Asynchronous Pulse Width Mode, send the command "ASH=9<cr>" to the camera. The following table contains commands that can be used to control the camera.

Command	Parameters	End of Command	Ack Response	Description
Camera Cont	trol			
:VRA=	DDD	<cr></cr>	:0 <cr></cr>	Set reference voltage for ch A (DDD = 000 - 1FF)
:VRB=	DDD	<cr></cr>	:0 <cr></cr>	Set reference voltage for ch B (DDD = 000 - 1FF)
:MGA=	DDD	<cr></cr>	:0 <cr></cr>	Set CDS gain for ch A (DDD = 042 - 1E8)
:MGB=	DDD	<cr></cr>	:0 <cr></cr>	Set CDS gain for ch B (DDD = 042 - 1E8)
:VRA?	•	<cr></cr>	:oVA[DDD] <cr></cr>	Enquire reference voltage for ch A
:VRB?	•	<cr></cr>	:oVB[DDD] <cr></cr>	Enquire reference voltage for ch B
:MGA?		<cr></cr>	:oGA[DDD] <cr></cr>	Enquire CDS gain for ch A
:MGB?		<cr></cr>	:oGB[DDD] <cr></cr>	Enquire CDS gain for ch B
Test Pattern	& Auto Balan	cing & Data Outp	ut Order	
:TPTN	Ν	<cr></cr>	:0 <cr></cr>	Enable/Disable Test Pattern (N=1 Enable, N=0 Disable)
:EABL		<cr></cr>	:0 <cr></cr>	Enable auto gain balance
:DABL		<cr></cr>	:0 <cr></cr>	Disable auto gain balance
:ABL?	•	<cr></cr>	:oAB[N] <cr></cr>	Check if auto gain balance is enable (N=1 Enable, N=0 Disable)
:VDO	S	<cr></cr>	:0 <cr></cr>	Video Data Output Order (s=A, B, C)
:DDP=	Ν	<cr></cr>	:0 <cr></cr>	Set output data depth (N=0 8 bit, N=1 10 bit)
Shutter Cont	trol			
:MSH=	S	<cr></cr>	:0 <cr></cr>	Set Manual Shutter (S= 0 - 9)
:DSH=	DDD	<cr></cr>	:0 <cr></cr>	Set Direct Shutter (DDD=000 - XXX*)
:ASH=	S	<cr></cr>	:0 <cr></cr>	Set Async Shutter (S= 0 - 9)
:SHR?	•	<cr></cr>	:o[shtr] <cr></cr>	Enquire current shutter mode and number
Lookup Tabl	e			
:GM45		<cr></cr>	:0 <cr></cr>	Set gamma (.45) table
:LINR		<cr></cr>	:0 <cr></cr>	Set linear table
:KNEE=	X1Y1X2Y2	<cr></cr>	:0 <cr></cr>	Set knees (X1,Y1,X2,Y2 = 00 - FF)
:SLUT	Ν	<cr></cr>	:0 <cr></cr>	Set positive knee or negative knee (0=positive, 1=negative)
:LUT?	•	<cr></cr>	:o[lut] <cr></cr>	Enquire current LUT setting

Table 11RM-6740CL Command List

Command	Parameters	End of Command	Ack Response	Description
Memory Pag	jes			
:WRPG	Ν	<cr></cr>	:0 <cr></cr>	Write Page N (N = 0 - 6; Page 0 is factory setting and not allowed to change by customer)
:LDPG	N	<cr></cr>	:o[settings] <cr></cr>	Load Page N (N = $0 - 6$)
:RDPG	N	<cr></cr>	:o[settings] <cr></cr>	Read (Report) Page N (N = 0 - 6)
:RPST		<cr></cr>	:o[settings] <cr></cr>	Report Current Overall Settings
Scan Mode				
:SMD	M	<cr></cr>	:o <cr> S</cr>	et Mode (M = A,B,C,D)
:SMD?	•	<cr></cr>	:oMD[mode] <cr></cr>	Enquire current scan mode
:SMB=	N	<cr></cr>	:0 <cr></cr>	Set Binning Mode (N=0~8)
Miscellaneo	us			
:CAM?		<cr></cr>	[CamMode]	Enquire Camera Model
:VER?		<cr></cr>	[version]	Enquire current version of firmware

*. Maximum size is equal to the maximum line number of each scan mode.

Note: If a command is not accepted for any reason, the camera will return a Nack response ":e<cr>".

Report Command : TS Return : RPST<cr>
0 RR + "24 bytes" + <cr>

	To bytes status hepoit					
Byte 1, 2	MGA		Channel A Gain Control (H'042 - H'1E8) Channel A Offset Voltage (H'000 - H'1FF)			
Byte 3, 4	VRA	•				
Byte 5, 6	MGB		Channel B Gain Control (H'042 - H'1E8)			
Byte 7, 8	VRB	•	Channel B Offset Voltage (H'000 - H'1FF)			
Byte 9	Function Flag 0					
	Bit 7	output pixel order 1	"00"=< "10"=< "01"=<			
	Bit 6	output pixel order 0				
	Bit 5	ScanMode5	"00" = horizontal no binning "10" = horizontal binning by 2			
	Bit 4	ScanMode4	"01" = horizontal binning by 4			
	Bit 3	ScanMode3	"00" = vertical no binning			
	Bit 2	ScanMode2	"01" = vertical binning by 2 "10" = vertical binning by 4			
	Bit 1	ScanMode1	"00" = Scan area A "01"=Scan area B "10"=Scan area C "11"=Scan area D			
	Bit 0	ScanMode0				
Byte 10	Function Flag 1					
	Bit 7	ShutterMode2	"000"=Manual Shutter			
	Bit 6	ShutterMode1	"001"=Async Shutter			
	Bit 5	ShutterMode0	- UIU =Direct Snutter			
	Bit 4	Output Data Depth 0=8 bit	0=8bit; 1=10bit			

Table 1218 Bytes Status Report

	Bit 3	ShutterSpeed3	"0000" - "1001" Shutter Speed 0 - 9		
	Bit 2	ShutterSpeed2			
	Bit 1	ShutterSpeed1			
	Bit 0	ShutterSpeed0			
Byte 11	Function Flag 2				
	Bit 7	LUTSIGN	0=Positive LUT; 1=Negative LUT		
	Bit 6				
	Bit 5				
	Bit 4				
	Bit 3				
	Bit 2	LUTTABLE2	"000"=Linear LUT		
	Bit 1	LUTTABLE1	"001"=Gamma.45 LUT "010"-Two Knoo Tablo		
	Bit 0	LUTTABLE0			
Byte 12	Function Flag 3				
•	Bit 7	TESTPATTERN	0=Disable TP; 1=Enable TP		
•	Bit 6	PASSWORD	0=Disable PW; 1=Enable PW		
•	Bit 5				
•	Bit 4				
•	Bit 3				
•	Bit 2				
•	Bit 1				
•	Bit 0	AUTOBALANCING	0=Disable AB; 1=Enable AB		
Byte 13			X1 (X1, Y1) Coordinate for Knee 1		
Byte 14			Y1 (X1, Y1 = H'00 - H'FF)		
Byte 15			X2 (X2, Y2) Coordinate for Knee 1		
Byte 16			Y2 (X2, Y2 = H'00 - H'FF)		
Byte 17	Reserved				
Byte 18	Reserved				
Byte 19	Reserved				
Byte 21, 22	Direct Shutter	•	H'000 - H'819		
Byte 23, 24	Reserved	Total line number	H'040 - H'1F3		

7 Troubleshooting

7.1 **Problems and Solutions**

Following are troubleshooting tips for common problems. In general, problems can easily be solved by following these instructions. If the following remedies fail to offer a solution to your problems, please contact a JAI Inc. representative.

•

7.1.1 Symptom: No Video

Remedies: Check that the following are properly connected and operational.

- **Power supplies**
- Main power source
- Async mode •
- Digital output cable
- Power cables Shutter control
- Lens •
- Analog video cable •

7.1.2 Symptom: Dark Video

Remedies: Check that the following are properly connected and operational.

- Shutter selection
- Iris opening on the lens

7.1.3 Symptom: Non-Synchronized Video

Remedies: Check that the following are properly connected and operational.

Proper mode output • Framegrabber software camera selection •

7.2 Information and Support Resources

For further information and support:

North American Technical Support

Phone: (408) 383-0300 Email: camerasupport.americas@jai.com

European Technical Support

Phone:	+45 4457-8950		
Email:	camerasupport@jai.com		
	Japan/Asia Technical Support		
Phone:	+81 45 440 0154		
Email:	camerasupport@jai.com		
Mail To:	JAI, Inc. ATTN: Video Applications 625 River Oaks Parkway San Jose, CA 95134		

8 Camera Specifications

8.1 Specifications

Table 13 RM-6740CL Camera Specifications Table

– .			
Feature	RM-6740CL		
Imager	1/3" progressive scan interline transfer CCD (KAI-0340)		
Active Area	4.74mm x 3.55mm		
Active Pixels	640 (H) x 480 (V)		
Cell Size	7.4μm x 7.4μm		
Display Mode	640 (H) x 480 (V) @ 200 Hz (full image)		
(Active Pixels)	640 (H) x 160 (V) @ 540Hz (partial scan)		
	$224 (H) \times 400 (V) @ 200HZ (partial scall)224 (H) \times 160 (V) @ 1250HZ (partial scall)$		
	(1x2, 1x4, 2x1, 2x2, 2x4, 4x1, 4x2, 4x4 binning)		
Sync	Internal/External auto switch		
-	HD/VD, 4.0 Vp-p impedance 4.7 K ohms		
	VD=frame rates ±2%, non-interlace		
	HD=horizontal frequency ±2%		
Data Clock Output	40.00 MHz		
Resolution	Digital:640 (H) x 480 (V), $(41) \times 480$ T) (lines (1))		
	(Analog: over 460 TV lines (H) \times 460 TV lines (V))		
S/N Ratio	>50 dB		
Min. Illumination Mono	1.4 lux, f=1.4 (no shutter) $@$ 200 fps		
Color	Sensitivity: 31μ /e-		
Video Output	Analog: 714 mV 75 ohms (650 mV white clip)		
	Digital output: 8-bit x 2 / 10-bit x 2 Camera Link		
Gamma	Programmable LUT (1.0 std.)		
Lens Mount	C-mount (use >1/3" format lenses or larger)		
Power Requirement	12V DC, ± 10%, 270mA (typical at 25°)		
Operating Temp.	-10°C to 50°C*		
Vibration	7 Grms (10Hz to 2000Hz) Random		
Shock	70G, 11 ms, half-sine		
Size (W x H x L)	50.8mm x 50.8mm x 85.1mm		
Weight	162 grams, 5.7 oz (without tripod)		
Optional Functions	OP 3-1, internal IR filter; OP 3-2, optical filter removal;		
	OP 25-2, TTL signals on 12-pin connector;		
	OP 21, glassless CCD imager; OP 21-OUV_UV_CCD imager with guartz cover (mono models		
	only)		
Optional Accessories			
I/O CL cable	26CL-02-26 (2m), 26CL-05-26 (5m)		
Power Cable	12P-02S		
Power Supply	PD-12UUP series (includes power connector)		
i ripoa mounting Kit	17-20		

*. Refer to Section 2.2.1 for information on camera heat dissipation. Image quality will degrade with increasing temperature.

8.1.1 RM-6740CL Physical Dimensions

Figure 32. FIGURE 8. Physical Dimensions

 $A^* = 17.9 \pm 1.0$ mm absolute distance measured to front of lens mount (Effective flange back distance = 17.53 ± 0.5 mm)

Caution: When mounting the camera to any fixture, do not use screws that extend more than 5 mm into the camera housing to avoid possible damage to the internal circuitry. For attaching the tripod mounting plate, only the supplied screws should be used.

8.1.2 Spectral Response

Figure 33. Monochrome Spectral Response

Supplement

This applies to cameras in this manual that are RoHS compliant, which are noted by RM or RMC.

The following statement is related to the regulation on "Measures for the Administration of the control of Pollution by Electronic Information Products ", known as " China RoHS ". The table shows contained Hazardous Substances in this camera.

(1) mark shows that the environment-friendly use period of contained Hazardous Substances is 15 years.

重要注意事项

有毒,有害物质或元素名称及含量表

根据中华人民共和国信息产业部『电子信息产品污染控制管理办法』,本产品《 有毒,有 害物质或元素名称及含量表 》如下.

	有毒有害物质或元素						
部件名称	铅 (Pb)	示 (Hg)	镉 (Cd)	六价铬 (Cr(VI))	多溴联苯 (PPB)	多溴二苯醚 (PBDE)	
外壳	×	0	0	0	0	0	
光学滤色镜	×	0	×	0	0	0	
○:表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T11363-2006规定的限量要求以下。 ×:表示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T11363-2006规定的限量要求。 (企业可在此处、根据实际情况对上表中打"×"的技术原因进行进一步说明。)							

环保使用期限

电子信息产品中含有的有毒有害物质或元素在正常使用的条件下不会发生外 泄或突变、电子信息产品用户使用该电子信息产品不会对环境造成严重污染 或对基人身、财产造成严重损害的期限。 数字「15」为期限15年。

Europe, Middle East & Africa Phone +45 4457 8888 Fax +45 4491 3252

Asia Pacific

Phone +81 45 440 0154 Fax +81 45 440 0166

Americas Phone (Toll-Free) 1 800 445-5444 Phone +1 408 383-0301

